
Chapter 14. Experimental design and 
statistics

Note: I have provided clickable links to all software (www.
geoff-hart.com/books/journals/software.html) and Web pag-
es (www.geoff-hart.com/books/journals/web-links.html) in 
this book, plus updates and error corrections (www.geoff-hart.
com/books/journals/2014-errata.html).

 Ask anyone what scientists do and the odds are good they’ll tell 
you that scientists collect numbers. But before you can collect num-
bers, you need to design an experiment that will generate reliable and 
useful numbers; that’s the part of  science referred to as “experimental 
design”. It might seem odd to be describing this aspect of  science in a 
book on writing for journals, since one might reasonably assume that 
the data has already been collected if  you’re reading this book. How-
ever, a large proportion of  the problems my authors encounter during 
the peer review process result from following inadequate experimental 
designs that produce data of  insufficiently high quality or that provide 
data that cannot answer their research questions, for reasons that I will 
discuss in the rest of  this chapter.

Part of  the problem is that experimental design does not seem to 
be taught as a specific course at many universities, though it is usual-
ly addressed to some extent within well-designed statistics courses. Stu-
dents seem to be required to learn this skill on their own, whether by 
finding a good textbook on the subject or absorbing the necessary skills 
subconsciously while reading journal manuscripts. For this reason, a 
brief  discussion of  experimental design seems necessary to fill in what 
seem to be common gaps in the education of  many researchers.

A second problem is that it is no longer possible to present experi-
mental data without performing at least some basic statistical analysis 
of  that data, and these tests must be appropriate for the data you are 
analyzing and the question you are hoping to answer. For an experi-
mental design to be effective, it must both generate reliable data and 
generate data that you can analyze statistically to inform your readers 
whether your results are likely to be meaningful. A great many inter-
esting and potentially important studies are undermined by an inade-
quate experimental design that makes it difficult to extract statistically 
significant results from the mass of  data. Although basic statistics is 
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part of  the curriculum in most fields of  research, this course seems to 
be poorly integrated with the key courses in a student’s major area of  
study. Again, students seem to be required to learn how to integrate 
this knowledge with their main expertise without much help. Although 
that help is provided to some extent in graduate school, it seems sec-
ondary to the more urgent tasks of  mastering advanced topics in a 
study area and finding time to perform research and write a thesis.

Since most textbooks on experimental design and statistics are con-
siderably larger than this entire book, it’s clearly not possible for me to 
cover either subject in any depth. Instead, I will provide general guid-
ance based on the most frequent problems that my many authors have 
encountered during the peer review process. There are undoubtedly 
other problems that the journal’s reviewers are not catching, but short 
of  performing a large and rigorously designed survey of  the review 
process (something that is beyond my ability), it’s not possible for me to 
tell you what those problems are. Thus, in this chapter, I’ll focus on the 
most common problems in the hope that by helping you to avoid them, 
your papers will have a smoother review process.

Note: Although I’ve studied statistics, both formally during my 
education and informally during many years of  editing journal 
manuscripts and needing to understand what my authors were 
describing, I’m not a statistician. Although I’m confident that 
my advice in this book is generally reliable, the best advice I 
can provide is that you ask for expert help from a statistician at 
your university or research institute. If  that advice contradicts 
what I have written here, follow the expert’s advice, not mine.

Experimental design
In modern science, most research is designed to test a hypothesis, 

which represents your informed belief  (based on a rigorous review of  
our knowledge of  some subject) about some aspect of  your experimen-
tal system. Experimental design is the art of  determining how to test 
that hypothesis. It begins with a careful consideration of  the questions 
you are trying to answer. It concludes with the development of  a data 
collection plan that will provide the data that you will use to answer 
those questions. There are three main types of  experimental design 
that are worth distinguishing. The first is a primarily observational de-
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sign, in which your goal is to accurately describe some variable so that 
you can determine whether its value differs between two or more con-
ditions. The second involves manipulating a study system and mea-
suring the results so that you can accurately describe the effects of  the 
manipulation. The third type involves modeling or mathematical sim-
ulation. To meet the goals of  this chapter, it is not necessary for me to 
distinguish among these designs, and I will use the term “treatment” 
to represent any specific set of  experimental conditions, regardless 
of  which of  the three types of  experiment I am discussing. However, 
when you are planning an actual research project, the different charac-
teristics of  these three types can greatly affect both the design of  your 
study and the results produced by that design, and you should consult a 
statistician to learn how to account for these effects.

Choice of variables
For each question, it will be necessary to measure the values of  one 

or more specific variables so that you can analyze these values and de-
termine their meaning. There are two main types of  variables to con-
sider:
• Independent (explanatory) variables drive changes in other variables. 

They may be variables that you will control, such as reaction tem-
perature, or factors such as time that are only partially under your 
control. In both cases, they define the treatments or experimental 
conditions that you will use. These variables are often referred to as 
“factors”, and when you design an experiment, you must consider 
how many factors are important and how many levels of  each fac-
tor you should test. For example, chemical reactions are strongly af-
fected by the temperature and by the reagent concentrations, and 
in a chemistry experiment, these factors are independent variables 
whose effects you should explore.

• Dependent (response) variables are the ones that change in response to 
any changes you make in the independent variables. In a chemical 
reaction, these variables might be the amount of  product that re-
sults from a given combination of  reagents, under a given set of  re-
action conditions, and the rate at which the product is produced.

Choice of methods
Having chosen your variables, you must now decide how to mea-

sure their values. In any field of  science, there are both proven tradi-
tional methods and promising new methods that you should consider. 
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Thus, any proposed design should begin with a careful consideration of  
how previous researchers have designed their experiments to measure 
your chosen variables. Older methods that have been used for years, 
and perhaps even for decades, are a good starting point because his-
tory has shown that they work. An advantage of  reading the research 
literature on these methods is that you will discover the problems that 
other researchers have encountered when they used these methods and 
any special tricks of  the trade they have learned that make the meth-
ods more effective. Most importantly, the recent literature will reveal 
situations in which certain methods should not be used, whether be-
cause they will be ineffective or because they will produce results that 
are “confounded” (i.e., the results that might be explained by factors 
other than the ones you studied).

Note: Choosing appropriate research methods requires an 
understanding of  the precision and accuracy that you must 
achieve to answer your study questions. On the one hand, 
there is no point performing highly precise measurements 
when less precise measurements will be adequate. On the oth-
er hand, it may be difficult to achieve the desired level of  preci-
sion or accuracy because of  the high cost or long time required 
to obtain those measurements; in this case, you will need to re-
design your experiment to work within your time and money 
constraints.

Most methodological innovations have been developed for good 
reasons, and if  you don’t understand those reasons, you cannot ac-
count for their effects on your research. Understanding the origins of  
a method and the assumptions it depends on is the only way to be sure 
that a given method is an appropriate way to answer your research 
question. If  you cannot determine those assumptions, ask your more 
experienced colleagues for an explanation; if  they cannot provide one, 
you’ll have to look to other experts for help. Every method depends 
on one or more assumptions, and if  those assumptions are not valid 
for your experimental system, then there is a high risk that the meth-
od will produce invalid results. A great many mistakes have been made 
over the years by authors who didn’t adequately understand the meth-
od they chose and its relevance for the system they were studying.
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However, even if  the assumptions that underlie a given meth-
od remain valid, it may still be possible to improve on the method. 
You should never abandon a method simply because it’s old; many old 
methods continue to be useful, albeit with minor revisions. But it’s like-
ly that much new knowledge has been obtained since an older method 
was originally developed, thereby challenging the underlying assump-
tions and requiring modifications of  the method to account for the 
newer, more complete understanding. Some older methods, though 
potentially powerful and able to produce high-quality results, were 
rarely used because of  their difficulty or the need for expensive or rare 
technology; instead, researchers used less powerful but more practical 
methods that became the standard approach in a field. More powerful 
methods may have recently become feasible based on new technology 
that solves the problems with the old method and that makes it a prac-
tical research tool.

Error-proofing your research
Once you’ve identified the most important factors and the most 

appropriate ways to measure them, the next step is to think careful-
ly about how your research could fail. Early in your career, this knowl-
edge comes from reading enough of  the literature to understand how 
your colleagues work, which is usually based on emulating successful 
studies published in the literature. Later in your career, that knowledge 
comes from years of  personal experience as a researcher or with a par-
ticular experimental system. The researchers who have gone before 
you have made a great many mistakes during their research, and learn-
ing how an experiment has gone wrong for others can help you avoid 
the same fate. (You’ll discover enough of  your own mistakes; there’s no 
need to repeat the errors of  others.) This advice is particularly true if  
you’re early in your career and have not yet fully mastered your field 
and its research techniques.

One major source of  error, particularly in the biological sciences, 
involves factors that you are not investigating but that can nonetheless 
affect the factors that you are investigating. For example, physiologi-
cal and psychological differences between men and women can affect 
the outcome of  a medical trial, so men and women must be treated 
as different groups in your design and analysis. Similarly, variations in 
solution temperature and in the purity of  the reagents can affect the 
outcomes of  a chemical study that focuses on the effects of  using dif-
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ferent reagents or reagent combinations. Your review of  the literature 
will reveal all or most of  the factors that can affect the outcome of  your 
experiment, and one of  your first steps must be to determine which 
of  these factors you should control, how you can control them, and 
the implications of  failing to control other factors. In some cases, you 
can account for these factors. In the medical trial, you may be able to 
include separate male and female groups, or you may need to focus 
on only one of  those groups and leave the other group for subsequent 
studies. In the chemical study, you may be able to control the solution 
temperature precisely, and leave the effects of  other temperatures (e.g., 
different reaction kinetics for different reagents) for subsequent studies.

It’s not possible to eliminate all possible mistakes or sources of  fail-
ure, particularly if  you’re working with living organisms (which are 
famously difficult to control), but a deep understanding of  the most 
common problems in your field of  research will let you incorporate 
techniques to avoid these problems. For example, in many chemical or 
physical analyses, the measurement apparatus must be calibrated re-
peatedly during the course of  measurements using a “blank” that con-
tains none of  the substance you’re seeking and a laboratory standard 
with a known concentration of  that substance. This calibration may be 
performed using a laboratory-standard chemical solution provided by 
a lab supply company (or created carefully in your own lab), a cylinder 
of  gas with a known concentration at a given pressure, a radioisotope 
with a known activity, and so on. Calibration before, during, and after 
your measurements lets you detect any developing problems that would 
render your data meaningless so that you can correct the problem be-
fore it affects the rest of  your data. For example, if  a non-zero value 
is obtained for the blank, that suggests the possibility of  contamina-
tion, whereas an incorrect value for the laboratory standard indicates 
the need to recalibrate the instrument. Other forms of  calibration are 
available for most measurement devices in most fields of  research.

Error-proofing your research also requires a careful consideration 
of  each step in your method in search of  things you might do wrong 
even if  the method itself  is robust. A thorough literature review will 
help because it will alert you to the potential problems that other re-
searchers have encountered and solved rather than relying only on 
your own experience, which is more limited than that of  the research 
community as a whole and is likely to be biased in different ways. One 
option is to create a list of  symptoms that will tell you when something 
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has gone wrong, so that if  you see one of  these symptoms, you can stop 
your analysis and correct the problem before you risk analyzing the re-
maining samples. This kind of  thought process will reveal additional 
ways to reduce the risk of  error or outright failure.

In many cases, and particularly in the most interesting research—
research that is pushing into unknown territory—consensus may not 
exist about the best methodology or about how to error-proof  your 
use of  that methodology. In that case, it may be necessary to perform 
a series of  exploratory studies that will let you understand your exper-
imental system thoroughly before you begin your main experiments. 
Such preliminary research sometimes seems to be a waste of  time, but 
it’s the only way to ensure that you understand your study system suf-
ficiently well to begin collecting more interesting data. This step also 
provides a good reality check that confirms your ability to analyze the 
data you will subsequently collect and provides an idea of  the amount 
of  variation in your study system (i.e., the sample size you will require 
to obtain statistically significant results).

Note: For surveys and questionnaires, always test and revise 
your initial set of  questions before using them to collect data. 
The goal is to confirm that they are as clear as you think they 
are, and that potential respondents will answer the questions 
you think you are asking. Using a subset of  your eventual sur-
vey population is most effective, since the results will reflect the 
real population’s understanding of  your questions. Where this 
is not possible, a good editor can help you review the questions 
to ensure that they are clear.

There are several additional possibilities to keep in mind as a means 
of  reducing the risk of  errors. Blocking is the creation of  groups com-
posed of  similar treatment units so that you can compare those units 
both within and between the blocks. For example, you might compare 
three drug treatments with a control (e.g., with no treatment or with 
the standard treatment) in each block, and each block might represent 
a different subset of  a larger population. Similarly, you might compare 
two fertilizer treatments with a control (e.g., no fertilizer or the stan-
dard fertilizer level) for the same crop in several regions. A blocked 
design would also let you compare the effects of  the same treatment 
between blocks to gain insights into the amount of  variation for each 
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treatment. If  the differences between a given pair of  treatment units 
are consistent among the blocks, you can have more confidence that 
this difference is real and consistent; if  the differences vary among the 
blocks or contradict each other, you may have discovered that some 
unexpected factor (e.g., a factor that leads to differences in the con-
ditions between the blocks) explains the variation. This hypothesis is 
stronger if  the same treatment produces significantly different results 
in different blocks.

Factorial experiments are more complicated designs that let you test 
all combinations of  the levels of  the independent variables simultane-
ously instead of  testing each independent variable by itself. Although 
this is a powerful technique for increasing the efficiency of  a design, it 
necessarily involves a large number of  samples, so it may be prohibi-
tively expensive or time-consuming. A fractional or partial factorial ex-
periment may accomplish much of  the same goal while minimizing 
the size of  the experiment. The Wikipedia article on factorial exper-
iments (http://en.wikipedia.org/wiki/Factorial_experiment) provides 
a good introduction to this topic, but if  you don’t already understand 
this complicated topic, you should consult a statistician for assistance.

When you choose among the various potential variables to mea-
sure, keep in mind the possibility of  orthogonality. Two independent 
variables are orthogonal if  they are not correlated—that is, if  neither 
one affects the other. For example, temperature and absolute humidity 
(the mass of  water per unit volume of  air) are not orthogonal because 
the amount of  water vapor the air can hold increases with increas-
ing temperature. Two non-orthogonal variables tend to have a high 
and significant covariance, so calculating the covariance is a way to de-
tect orthogonality. In contrast, an orthogonal design lets you predict 
the dependent variable using two or more independent variables either 
separately or in combination, thereby providing a way to estimate the 
relative importance of  or contribution by each variable. Because inter-
actions among factors often reveal important phenomena, a lack of  or-
thogonality should not be considered a failure of  your experiment; on 
the contrary, it may reveal an important relationship that you must ac-
count for in future research.

It is also important to look for spurious relationships. Never forget 
the famous advice that “correlation does not imply causality”, partic-
ularly if  you cannot propose a causal explanation for the correlation. 
Sometimes variable A appears to control variable B, when in fact vari-
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able C controls A, and A cannot control B in the absence of  C. In 
that case, C is the truly important variable. Thoroughly understanding 
your study system will help you to understand whether it is necessary 
to study only A, or whether you should also study C.

A final but very important way to confirm that you understand the 
system you are studying is by obtaining independent lines of  evidence. 
This is referred to as triangulation, a term that originates from the use 
of  trigonometry to identify the position of  the third point of  a triangle 
when you can determine the directions of  that point from two known 
positions and the distance between them. In the context of  experimen-
tal design, triangulation means that you look for ways to provide con-
firmation by measuring the same factor from different perspectives. 
If  both lines of  evidence point to the same conclusion, you can have 
more confidence the conclusion is correct. Conversely, if  the evidence 
points to different conclusions, more research will be required to learn 
the cause of  this discrepancy.

Choosing a standard of comparison
Having chosen your variables and a method for reliably and accu-

rately measuring their values, the next step is to choose a standard for 
comparison. That standard is usually a “control” for which you can 
obtain a known result, but sometimes it is a standard practice that re-
quires improvement. The most basic control is the unperturbed exper-
imental system, since a common research goal is to perturb that system 
and observe the consequences. For example, a known biochemical re-
action observed under a standard set of  conditions (e.g., temperature, 
pressure, reagent concentrations) should produce a predictable result 
against which all other combinations of  reaction conditions can be 
compared. In genetics, levels of  expression of  so-called “housekeep-
ing” genes that are active in basic cellular functions provide that con-
trol; the genes that encode actin and ubiquitin are common examples, 
though other genes may be more appropriate in specific circumstances.

Combining measurements of  such a known situation with mea-
surements of  a poorly understood situation that is your real study goal 
provides two forms of  control: First, if  the absolute values of  the con-
trol measurements lie outside the expected normal range, then you 
know there may be a problem with your experimental conditions that 
must be solved, or perhaps you have discovered something new that 
can explain that unusual result. Second, if  the results for the control 
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fall within the expected range of  values, they provide a way to normal-
ize your results. “Normalization” (also called “standardization”) relies 
on the assumption that in the absence of  perturbation, a standard pro-
cess or an indicator such as a housekeeping gene will function at 100% 
of  its normal efficiency, and dividing all results by that base level will 
give a true measure of  the change relative to the standard conditions. 
In some cases, the standard of  comparison is the result produced by an 
existing method (e.g., the current form of  medical treatment), and the 
goal is to see whether a new treatment produces a result that (i) differs 
from the absence of  any treatment (the control) and (ii) provides a bet-
ter result than the current standard.

Note: Although “normalization” has a range of  specific 
meanings in statistics, non-statisticians commonly use the word 
to refer to the comparison of  a value with a standard of  com-
parison, in the form of  a ratio. This differs from “transforma-
tion”, which involves mathematically adjusting values so that 
the dataset more closely resembles a normal distribution. See 
Osborne (2002) and Maciejewski (2011) for details.

Eliminating bias
The next step is to eliminate as many forms of  bias as you can. Be-

cause calibration greatly reduces the risk of  equipment-based errors 
that would introduce a consistent bias, human bias becomes the most 
common problem—and the most pernicious form of  bias because it is 
often subtle and difficult to detect.

When you will be studying multiple instances of  your study sys-
tem, whether those instances are individuals within a population, sites 
within a region, ore bodies within a geological province, or depths 
within a body of  water, randomization is a good approach to elimi-
nating human bias. Randomization does not mean that you carelessly 
throw your test subjects into different groups or pick samples with your 
eyes closed. Rather, it means that you distribute your subjects among 
groups or choose your sample locations without conscious or uncon-
scious bias. Many popular randomization techniques, such as drawing 
playing cards from a deck or using the randomization function pro-
vided by many computer programming languages, are actually closer 
to pseudo-random. That is, they may appear to be random for small 
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sample sizes, but in statistical studies with large numbers of  iterations 
(e.g., Monte Carlo simulations, computer models of  the environment 
that run over long time periods or with short time steps), patterns in 
the randomization algorithm may become apparent that bias your re-
sults—potentially seriously. If  you need to use true randomization that 
will be suitable for the latter type of  experiments, explain your needs to 
a statistician and ask for their advice.

Bias can arise from other causes. The first form of  bias arises from 
temporal effects. Some effects are delayed and cannot be measured for 
some time after you apply a stimulus or disruption of  the experimen-
tal system. For example, it may take some time for applied heat to fully 
penetrate an object or to raise an entire volume of  liquid to a consis-
tent temperature, and it may take time for a plant to change its physi-
ology in response to changes in gene expression. Examining the system 
before that time has passed can lead to an incorrect understanding of  
the effects of  a treatment. Effects can also change over time, as in the 
case of  plants that respond differently to a treatment during their veg-
etative growth and reproductive stages or that respond differently if  
the daylength, light intensity, or other factors change during the year. 
For these reasons, you must always carefully determine the initial state 
of  the study system and decide both how long will be required before 
you can observe the effect of  a treatment, and whether that initial state 
is suitable for the factor or factors that you are studying. If  you choose 
the wrong time or an unsuitable starting condition, this can bias your 
results.

An important form of  bias arises when the subject’s knowledge 
of  the treatment can potentially influence the outcome, as in the case 
of  studies with living organisms and particularly studies with humans. 
In such a case, you must use blinding to ensure that the subjects can-
not learn which treatment they are receiving. If  your knowledge of  the 
treatment could also affect the subject’s perception of  the treatment or 
your interpretation of  the results, then you should also use blinding for 
yourself  (a so-called double-blind experiment) to ensure that you do not 
know the nature of  the treatment. In this case, someone who is not di-
rectly involved in applying the treatment or collecting and analyzing 
the data should assign subjects to each treatment for you. Although this 
is essential in fields such as medicine and psychology, it is rarely, if  ever, 
necessary in the physical sciences, as Smith and Pell (2003) point out 
quite clearly.
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Randomization is important when you do not know enough 
about your study system to predict whether it is subdivided into dis-
tinct groups. Sometimes these groups are clear and obvious, as in the 
case of  vegetation studies that distinguish between grassland and forest 
sites. In other cases, it may be necessary to perform some preliminary 
research to determine whether subtler groups exist. When you know 
of  or can detect such groups, it is better to divide your sample among 
these groups, a process referred to as stratification. This approach re-
duces variation in your data that results from differences between the 
groups; for example, studying human populations for the incidence of  
a beard would provide an average incidence of  50% if  you combined 
men and women into a single population, whereas performing sepa-
rate analyses of  these groups would provide an incidence close to 0% 
for women and close to 100% for men. In such a case, you should 
divide your sample between these groups and then sample randomly 
within each group. Correct stratification requires you to identify back-
ground factors (ones that you will not directly manipulate) that could 
affect the dependent variables, the independent variables, or both.

Replicate your results
Replication is a fundamental technique in science, because it in-

creases your confidence that what you are observing is real. Indeed, 
an interesting result obtained by one researcher may not be consid-
ered real until similar results have been obtained by other research-
ers using the same techniques. Replication is particularly important for 
work with living organisms, which have much higher variability than 
non-living systems. Replication is also important within a single exper-
iment, since it provides more confidence that you have obtained a rep-
resentative sample of  the population that you’re studying instead of  
accidentally selecting the one or few individuals who will respond in a 
specific way. Replication comes in two forms:
• Increasing your sample size to increase the likelihood that you have 

obtained a representative sample.
• Increasing the number of  replicates (groups of  measurements, each 

with a similar sample size) to determine whether the results are 
highly predictable (i.e., are similar for each replicate) or may be less 
predictable (i.e., vary widely among the replicates).
One of  the most common experimental design failures that I’ve see 

during the past 25 years results from an insufficiently large sample size 
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and a lack of  sufficient replication. The most common reasons for this 
problem are:
• Financial constraints: Research budgets are fixed, and the more 

expensive the measurements, the fewer you can afford to obtain.
• Time constraints: The longer it takes to obtain each measure-

ment, the fewer measurements you can obtain within a given peri-
od.

• Labor constraints: The fewer people (including graduate stu-
dents and undergraduates) who are available to help you obtain 
your measurements, the fewer measurements you can obtain within 
a given time period.

• A combination of  financial, time, and labor constraints: 
When you have a limited budget, time, and pool of  assistants, this 
combination severely constrains the number of  measurements you 
can obtain. For example, research in remote and hazardous loca-
tions (e.g., the surface of  Mars) permits only a limited sample size.
Although these constraints cannot be ignored, they are sometimes 

less serious than a recurring problem in the papers that I’ve edited: the 
researcher did not attempt to predict the sample size they would re-
quire to obtain statistically significant results. Although it is never pos-
sible to be absolutely certain that you’ll obtain significant results, or 
non-significant results that you can be confident are really not signifi-
cant, you can greatly increase the likelihood of  success by using avail-
able knowledge to estimate an appropriate sample size. There are 
several possible approaches, each of  which has a different goal (e.g., 
calculating a reliable mean versus testing a hypothesis) or which relies 
on different statistical assumptions (e.g., that the population resembles 
a normal rather than a skewed distribution):
• The simplest approach, which is therefore least likely to be effec-

tive for your specific conditions, is to review the literature and learn 
what sample sizes previous researchers have used successfully. The 
more similar their study system is to yours, the more likely this ap-
proach will be productive.

• A more sophisticated approach involves reviewing the literature on 
your subject to learn the range of  variation (typically the variance, 
standard deviation, or coefficient of  variation) that has been report-
ed for a given variable. Where a subject has been studied in depth, 
you may be able to select studies that are similar to your study sys-
tem and use their estimates of  variation. Based on that variation 
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and the type of  statistical test that you plan to use (e.g., Student’s t, 
the F statistic in analysis of  variance), you can consult published ta-
bles of  probability to determine the required sample size. 

• It is also possible to calculate the sample size based on the required 
power of  the test (e.g., a P% likelihood of  being able to detect a dif-
ference of  D units between two treatments).
Wikipedia provides a good discussion of  some of  the factors to 

keep in mind when calculating a sample size (http://en.wikipedia.org/
wiki/Sample_size_determination), but for difficult or demanding situ-
ations, it would be wise to consult a more authoritative reference or a 
statistician who has expertise in experimental design.

Note that increasing your sample size will not always produce bet-
ter results. Even if  you ignore certain issues such as the statistical char-
acteristics of  the study population, there comes a point of  diminishing 
returns when increasing the sample size increases the cost, the time re-
quirements, or the labor requirements to complete the research. On 
that basis, a smaller sample size may be more efficient while still pro-
viding acceptable power to obtain statistically useful results.

In all experimental designs, it is wise to remember the risks in-
volved in taking shortcuts (choosing a smaller sample size) to reduce the 
cost or the time and labor requirements of  a study. Compare the cost 
of  a more demanding design with the cost of  spending large amounts 
of  time and money but failing to achieve publishable results, whether 
those results are statistically significant differences between treatments 
or a defensible lack of  such differences. When statistical calculations 
suggest the need for a larger sample size than you can afford, some 
degree of  compromise will be necessary; often, this means that you 
must reduce the scope of  your project to investigate a smaller subset 
of  the overall problem. The larger the difference you expect between 
two treatments and the lower the variation within each treatment, the 
smaller the sample size you can afford to use.

Test your design to confirm that it produces data 
you can analyze

When you believe that you have created a sound experimental de-
sign, test that your design produces data you can actually analyze. To 
test your design, create an “artificial” dataset based on your expecta-
tion of  the range of  values that you will measure. You can sometimes 
obtain this data from published research (e.g., by extracting data from 
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a scatterplot); in other cases, you can generate a random population of  
data using statistical software (e.g., using a Monte Carlo simulation). In 
the latter case, you must carefully consider what assumptions the soft-
ware makes about the nature of  the statistical distribution. For exam-
ple, a randomization procedure that is based on a normal distribution 
will not provide a valid test for a population with a non-normal distri-
bution of  values. Use the same equations or statistical tests that you 
will use to test your real data to test the artificial data. If  you detect any 
problems, re-examine your design to see whether you can eliminate 
them or whether you will need different tests or measurement proce-
dures.

One common problem is to base your design on the assumption 
that the data will be normally distributed (i.e., will follow a normal 
distribution). Never accept this assumption uncritically. If  the statisti-
cal software you use for your data analysis does not automatically test 
data for normality before applying a statistical test that requires nor-
mally distributed data, you must perform that test yourself  before you 
use that statistical test. Data that seems likely to follow a given type 
of  statistical distribution may require an experimental design based on 
that distribution. Although it is common to transform data (often us-
ing a logarithmic transformation) until it meets the criterion of  nor-
mality, thereby allowing the use of  standard statistical procedures, 
this approach is suboptimal because it can introduce certain statistical 
problems (Osborne 2002).

Design your study to provide publishable results
If  possible, try to design your study to produce publishable results, 

even if  it fails to support your primary hypothesis. Choosing a suffi-
ciently large sample size, with adequate replication, and using error-re-
duction techniques such as the use of  blank controls and laboratory 
samples with a known value of  some property means that even if  you 
do not find statistically significant differences between two treatments, 
you can at least claim with some confidence that it is possible that no 
difference exists. Traditionally, it has been difficult to publish such neg-
ative results, since reviewers tend to assume that something was wrong 
with your experimental conditions or with your analytical procedure. 
You’ll have an easier time persuading journal reviewers to accept your 
negative results if  you provide evidence that neither assumption is cor-
rect.
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Dirty secret: To increase the likelihood of  obtaining publish-
able results is to limit your ambitions. If  a larger study can be 
broken into several smaller experiments that each tell a com-
plete story, it may be possible to obtain publishable papers from 
one or more experiments even if  the other experiments fail.

If  it’s not possible to publish all of  your results as a single long 
research paper, some subset of  your results may be publishable as a 
shorter paper, such as a letter, research note, or short communication. 
Although these types of  paper are less prestigious than a full paper, 
it is better to publish them than to obtain no published result from 
your study. Where it is possible to design your experiment to produce 
a series of  small publishable papers, incorporate this possibility in your 
design. If  the overall study produces a consistent story based on assem-
bling the smaller stories from each experiment, that’s the best outcome. 
If  that is not possible, then at least you will receive some publication 
credits from your hard work.

Obtain a reality check
The final step before you begin using an experimental design to 

collect data is to ask at least one colleague to review your design rig-
orously in search of  flaws, including flawed assumptions. Fixing these 
flaws before you begin collecting data can save thousands of  dollars of  
your research budget and tens or even hundreds of  hours of  research 
time. Although your ability to critique your own designs will improve 
as you gain experience with experimental design, and although this re-
view is less necessary when you are using a design that your previous 
research has proven to be effective, someone who was not involved in 
the design process will always have a perspective you lack. They may 
have knowledge you lack about better methods or problems with the 
methods you have been using, and can therefore suggests ways to im-
prove the power of  your design or reduce the risk of  failure.

When you form a hypothesis, it is usually based on your educated 
belief  about how a system is likely to function and how that function-
ing will respond to experimental manipulation. It is therefore appro-
priate to focus on tests of  your belief. But you must never forget that 
your belief  (and thus, the hypothesis that is based on it) may be wrong, 
or that something very interesting may be happening that is entirely 
unrelated to your hypothesis. Focusing too narrowly on your hypoth-
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esis can lead to what is called confirmation bias (noticing only the data 
that supports your preconceptions), and this can blind you to nega-
tive results that contradict your hypothesis. It can also blind you to po-
tentially interesting phenomena that should be studied in more depth. 
Thus, the best experimental designs both provide support for identify-
ing contradictory evidence and encourage you to take a step back and 
look at the larger system in which your study system exists. Some of  
the most interesting research results are obtained by serendipity rather 
than careful design.

Wikipedia provides a good summary article on experimental design 
that includes an extensive bibliography (http://en.wikipedia.org/wiki/
Design_of_experiments). Your colleagues will also be a good source of  
recommendations for textbooks, software, and other resources. Wikipe-
dia also provides a useful glossary of  the terminology of  experimental 
design (http://en.wikipedia.org/wiki/Glossary_of_experimental_de-
sign) that will help you decipher the literature on this subject.

Statistics
Modern science relies so heavily on statistics that it is almost im-

possible to publish a study that lacks a statistical analysis. As I noted in 
the previous section, it’s important to confirm that your experimental 
design supports statistical analysis—and ideally, that it supports powerful 
statistical analysis, since some statistical tests provide weaker evidence 
than others and may be unpersuasive to a journal’s reviewers. If  you 
lack sufficient expertise to choose an appropriate test, speak with a stat-
istician, and revise your experimental design (if  necessary) to permit 
the use of  that test. In the rest of  this chapter, I’ll discuss some aspects 
of  statistics that confuse many researchers and that have caused prob-
lems for many of  my authors.

Note: Lang and Altman (2013) provide a useful discussion of  
how to report statistics in journal papers, along with many lit-
erature citations that provide additional details.

A few words about significance
The first thing to understand about statistical significance is that a 

significant result is not the same thing as a true result. Significance means 
only one thing: that we can be reasonably confident that a result did 
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not arise purely from chance. However, although a high level of  sig-
nificance is reassuring, differences in significance levels are far less 
meaningful than most people believe because of  several important but 
sometimes forgotten points:
• All thresholds for significance are completely arbitrary. The stan-

dard significance level of  p < 0.05 means an error rate of  1 in 20, 
which is unacceptably high in many contexts.

• The same significance level has very different meanings for a study 
with a sample size of  10 and a study with a sample size of  1000. 
Any given p level is far more meaningful in the second case.

• A result that is statistically significant may have no practical signif-
icance, whereas a non-significant difference may be so large that 
it has high practical significance that demands a closer look at the 
study system.

• Where the range of  values in an observed statistical distribution is 
large, the extreme values (those that fall outside the 95% confidence 
interval, which are often called “outliers”) may be too large to ig-
nore, particularly in large populations that are expected to contain 
one or more outliers.

• A difference between two treatments that is statistically significant 
may be a mathematical artifact rather than a real difference if  the 
measurement resolution is sufficiently coarse. For example, if  the 
maximum spatial resolution of  a satellite photo is 30 m, a statistical-
ly significant 1-m difference in positioning would not be meaning-
ful; that difference is less than the resolution of  the image.

• Gelman and Stern (2006) note another underappreciated problem: 
that a small change in the underlying data can lead to a dispropor-
tionally large change in the significance level.
Some authors I’ve worked with also make the mistake of  focusing 

so narrowly on the statistical results that they don’t stop to think about 
the larger context for the data. Examples of  some common errors pro-
vide insights into why you should think as carefully about the meaning 
of  the data as you do about its statistical significance:
• The “base rate” fallacy (failing to account for the proba-

bility of  a given result in a population): Consider the case of  
an identical frequency of  computer defects (1 in 100 units require 
repairs) for two brands: Brand A, which sells 1000 units per month, 
and Brand B, which sells 100 units per month. Even though the fail-
ure rate is identical, the expected number of  repairs per month will 
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be 10 units for Brand A and 1 units for Brand B. Without consid-
ering the base rate (sales per month), it is easy to reach the errone-
ous conclusion that A requires 10 times as many repairs as B, and is 
therefore an unreliable brand.

• Extrapolation based on a regression: A linear or multiple re-
gression can provide an extremely high goodness of  fit and strong 
statistical significance, but without understanding the range of  pos-
sible values for each parameter in the regression, we cannot tell how 
far we can safely extrapolate using the regression equation. For ex-
ample, many natural phenomena exhibit predictable behavior only 
within a narrow range of  conditions; the regression becomes mean-
ingless beyond those conditions, or may require separate regression 
analysis (e.g., piecewise regression) for two or more subsets of  the 
overall range of  conditions. If  your goal is to extrapolate beyond 
a certain range of  values, you must adopt an experimental design 
that will let you identify the limits of  a regression.

• Choosing the wrong form of  regression: Researchers com-
monly assume that a linear regression is the best form for a given 
set of  data, and fail to test this hypothesis by comparing alterna-
tive forms of  equation to see whether they provide a better fit to 
the data. As a result, many processes that are described using a sim-
ple but statistically significant linear regression should instead be 
described using nonlinear regression or (as noted in the previous 
point) a segmented (piecewise) regression that produces different 
curves for different ranges of  conditions.

• Correlation may or may not be related to causality: The 
fact that two variables are significantly correlated may not be mean-
ingful if  you cannot propose an explanation of  that correlation 
based on some underlying physical or biological mechanism. If  
such a mechanism exists, then the correlation is more likely to pro-
vide a measure of  the strength of  the mechanism.

• Simpson’s paradox (https://en.wikipedia.org/wiki/
Simpson’s_paradox): When you perform regression analysis us-
ing combined data for two or more groups with different charac-
teristics, you may reach a conclusion that differs dramatically from 
the conclusion you would reach if  you had analyzed the two groups 
separately. This example illustrates the importance of  efforts to de-
tect significantly different groups that would lead to a need for strat-
ified sampling and separate analyses for each group.
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The lesson of  these examples is that you must think carefully about 
the meaning of  your data and its underlying characteristics before you 
consider whether your results are statistically significant. Reinhart 
(2013) provides an informative discussion of  various common errors 
related to statistics-based reasoning.

Reporting significance levels
How do you report significant differences? In the text, the most 

common approach is to state that one value was significantly higher 
or lower than another value, then add the test name and p level in 
brackets. However, you should never say only that two results were sig-
nificantly different, since that does not tell the reader the direction of  
the difference; always use more precise wording such as “significant-
ly heavier” or “significantly negatively correlated” to clarify the nature 
of  a difference or correlation. To avoid the need to provide this infor-
mation each time you describe a difference, some journals will let you 
define the significance level for each test only once, in the Methods sec-
tion, using wording similar to the following: “Unless otherwise noted, 
differences were statistically significant at p < 0.05.” You can then re-
port the p level only for important exceptions to this rule. Note that 
except for unusually precise statistical comparisons, it is almost never 
necessary to report a more rigorous criterion than p < 0.001.

In figures and tables, the best approach depends on the nature of  
the statistical test that you used and the specific comparisons that you 
tested:
• If  you are comparing only one value at a time with some refer-

ence value, such as the value in the control, you can often label the 
values that differ significantly with asterisks, then add the following 
description in the figure caption: “Significance of  differences com-
pared with the control [or other named reference]: +, p < 0.10; *, p 
< 0.05; **, p < 0.01; ***, p < 0.001.” Delete any of  these definitions 
for significance levels that did not occur in your analysis.

Note: These four symbols for significance levels are used by 
most journals, and represent an informal standard that you 
should not change.

• For multiple comparisons, where you are comparing values both 
with a reference value and with each other, use the following simple 
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wording: “Values in a column [or “in a row”] labeled with the same 
letter do not differ significantly.” For more complicated compari-
sons, you may need a more complex wording such as the following: 
“Values in a column [or “in a row”] labeled with the same capital 
letters do not differ significantly among treatments. Values in a col-
umn [or “in a row”] labeled with the same lower-case letters differ 
significantly among times for the same treatment.”

A note if  English is your second language: Capital let-
ters are A, B, C, ... Z; lower-case letters are a, b, c, ... z.

Although more complex comparisons are possible, the resulting 
notation may become too complex for this kind of  description to be 
effective. In that case, consider dividing the figure or table into two or 
more parts, each of  which focuses on efficiently presenting only one 
subset of  the comparisons. To avoid duplication of  information in the 
printed version of  the journal, it may be necessary to present the less 
important comparisons as Online Supplemental Material. (See Chap-
ter 18 for details.)

A final note about significance: To avoid confusion, you should 
only use the word “significant” in numerical comparisons when you 
are referring to statistical significance. In all other contexts, you should 
use words such as important or meaningful to describe the relevance of  a 
result, or words such as greatly, markedly, substantially, dramatically, or clear-
ly to describe the magnitude of  a difference.

Use the right test statistic
As I noted earlier, every statistical test depends on certain assump-

tions, including assumptions about the underlying distribution of  the 
data. Before you use any statistical test, learn what assumptions it re-
quires, and test to confirm whether those assumptions are valid. This 
seems like an obvious point, but I have worked with so many young sci-
entists (and some who were not so young) who don’t test their data for 
normality before applying a test that is only valid for a normal distri-
bution that I feel it necessary to remind you of  this point. Part of  the 
problem is that many researchers assume that their statistical software 
will automatically examine the distribution of  the data before it allows 
the use of  a statistical test. Often, that is not the case, and you must re-
member to perform this test yourself. If  the test’s requirements are not 
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met, using the test will potentially produce meaningless results. To in-
form readers that you have performed this test and remind young re-
searchers to follow your example, it is worth explicitly stating that you 
confirmed that the test was appropriate (e.g., that you tested that the 
data follows the distribution required by the test).

When your data does not follow the distribution required by a test 
(commonly, a normal distribution), researchers commonly apply var-
ious mathematical transformations to the data until the transformed 
data follow the required distribution. Two common transformations 
are based on power functions (e.g., x’ = xp, where x’ is the transformed 
value, x is the original value, and p is the power, ranging from -1 to +1) 
or logarithmic functions (most commonly, log = log10 and ln = loge). 
Note that just because you have applied a commonly used transforma-
tion, this does not mean that you have produced a normal distribution; 
you should always confirm that you achieved this result. If  the distri-
bution is still not normal, it is tempting to apply an additional trans-
formation, but each new transformation progressively distorts the data 
you are using for your analysis. Instead, it may be wiser to use a non-
parametric statistical test. Many parametric tests that require a normal 
distribution have non-parametric equivalents; these include the Kru-
skal-Wallis test instead of  one-way analysis of  variance, and Spear-
man’s rank correlation instead of  Pearson’s correlation.

Tip: Even though “log” is assumed, by convention, to mean 
log10, it is clearer if  your write this as log10. So many of  the au-
thors I have worked with did not recall this definition that I am 
convinced that being explicit is safer than assuming that read-
ers will understand the correct meaning. The cost of  this ex-
plicitness—adding only two characters (10)—is acceptable.

One problem with transformations is that even when there are few 
outliers (often defined as values that lie more than three standard de-
viations from the mean), the transformation may compress the data 
into a small area of  the graph, making it difficult to distinguish pat-
terns within the resulting tightly clustered data. In some cases, it may 
be helpful or even necessary to present both an overall graph that in-
cludes all of  your data, and an enlarged version of  the key parts of  the 
graph that contain areas of  interest. Maciejewski (2011) provides a use-
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ful discussion of  choosing a transformation that is optimal both for the 
characteristics of  the data and for visualization of  that data in a graph.

The set of  parameters that relate to what are referred to as “mea-
sures of  central tendency”, and which describe the position of  a dis-
tribution’s center, must also be carefully considered. By default, most 
researchers calculate the mean value, and in doing so, forget that the 
mean works best for a data with a symmetrical distribution. For strong-
ly skewed distributions, the median (the point where half  of  the popu-
lation has a larger value and half  has a smaller value) or the mode (the 
value or range of  values with the highest frequency) represent better 
choices. In some cases, the range of  values or the interpercentile range 
may be more appropriate. Similarly, the standard deviation (SD) pro-
vides an estimate of  the size of  the variation of  the distribution around 
the mean. In contrast, the standard error (more correctly, the standard 
error of  the mean, SEM) represents the precision of  estimates of  the 
mean; that is, it is the standard distribution of  the sampling error when 
you use a sample mean to estimate a population mean, and is particu-
larly important in regression analysis. It should not be used in place of  
the SD just because it appears to indicate a lower magnitude of  varia-
tion.

Tip: Whenever you provide values in the form A±B, always 
specify whether B represents the SD or the SEM.

As I noted in the previous section, correlations are often used to 
represent the strength of  the relationship between two variables. How-
ever, many authors are confused about the different types of  correla-
tion. Pearson’s correlation coefficient is not the same parameter as the 
goodness of  fit in least-squares linear regression. How to capitalize 
these two parameter names varies, but lower-case r is most often used 
for Pearson’s correlation coefficient, whereas capitalized R2 (not r or R 
without an exponent) is the regression “goodness of  fit” or “coefficient 
of  determination”. Pearson’s r provides an indication of  how closely a 
relationship between a dependent variable and the independent vari-
able follows a straight line, whereas R2 represents the proportion of  the 
variation in the dependent variable that can be explained by the de-
pendent variable. The two are clearly related quantities, but because 
r typically equals the square root of  R2, they cannot be used as syn-
onyms. Because I find considerable confusion about this difference, it’s 
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important to clearly state the parameter name that you are reporting. 
For example, write “the coefficient of  determination (R2)”. Once you 
have defined your terminology, the reader will understand the mean-
ing.

Tip: For any value that expresses the strength of  the agree-
ment between two variables, always report the p value to com-
municate whether the relationship is statistically significant. For 
very large values (e.g., values > 0.9), readers will assume signif-
icance, but for small or intermediate values, the significance of  
the result is unclear if  you do not state it explicitly.

The final point I’ll discuss relates to the benefits and drawbacks of  
presenting “normalized” versions of  your data, which are the values 
expressed relative to some reference point. Although normalized val-
ues are sometimes expressed by subtracting a baseline reference value, 
the most common approach is multiplicative: the normalized value is 
expressed as some multiple (ratio) of  the reference value. This is par-
ticularly important for variables with different units of  measurement 
or from different categories (e.g., mass versus volume), since the nor-
malized values then reflect the proportional change. This calculation is 
usually done by setting the value for one treatment (usually the mean 
value for the control, but sometimes a different reference value) to 1.0 
or 100%; all other values are then divided by the reference value used 
in this calculation. In essence, this is no different from calculating the 
ratios of  one value to another.

This approach offers the advantage of  providing an intuitive, eas-
ily understood explanation of  the relative values of  the two numbers. 
However, it suffers from the flaw I described earlier in this chapter as 
the “baseline fallacy”: by concealing the baseline value, it also conceals 
the meaning of  the normalized value. For example, if  the mean val-
ue for the control is 1.0 units and the value for a treatment is 2.0 units, 
the normalized value is 200% of  the reference value; the same result 
is obtained if  the control has a value of  100 units and the treatment 
has a value of  200 units, even though the difference (200 – 100 = 100 
units) is 100 times the former difference (2 – 1 = 1). This can lead to 
a problem similar to one that I discussed earlier in the context of  sig-
nificance: a failure to consider the magnitude of  the actual difference. 
The solution is obvious once you know it: provide both the relative val-
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ue and the actual value, and carefully distinguish between their differ-
ent meanings.

Key points to learn
• An important reminder: I am not a professional statistician. Al-

though my advice in this chapter is sound for most typical situa-
tions, more complex situations will require different solutions. When 
in doubt, obtain the advice of  an expert statistician when you plan 
your own research.

• Experimental design seems to be poorly taught at most universities, 
and there seems to be little guidance on how to integrate statistics 
with the core subjects in a given field of  research. As a result, the 
authors I’ve worked with make many mistakes in their experimental 
design and the associated statistical analysis. In this chapter, I pro-
vide some advice based on 25 years of  observing these mistakes in 
the hope that you will be able to avoid the same mistakes.

• The process of  experimental design can be summarized as follows: 
start by identifying the variables that you will control or measure, 
and methods and instruments suitable for measuring their values. 
Conclude by looking for ways to error-proof  your measurements, 
and include those ways in your design. Choose an appropriate stan-
dard against which to compare your results.

• Look carefully for potential sources of  bias in your measurements, 
and take precautions to eliminate or minimize the bias.

• Don’t guess at the replication and sample size that will be necessary 
to increase the likelihood of  obtaining statistically significant results. 
There are statistical techniques to estimate this sample size, and you 
should determine which technique is best for your study’s goals.

• Always test your design using artificially generated data to ensure 
that you can successfully analyze the data. Be careful not to gen-
erate test data with characteristics (e.g., the distribution) that differ 
greatly from those of  your actual data.

• Design your study to ensure that at least one of  the experiments is 
likely to succeed, thereby producing publishable results.

• Obtain a reality check from your colleagues to ensure that you have 
not forgotten anything important or made any incorrect assump-
tions in your experimental design.

• Statistical significance is a complex concept, and there are many 
misunderstandings of  its true meaning. Watch for several logical er-
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rors when you describe significance, and clearly distinguish between 
statistical and practical significance.

• Before using a statistical test, confirm that your data conforms with 
the requirements or assumptions of  that test. Explicitly confirm this 
instead of  assuming that a widely used test is appropriate for your 
data; statistical software often does not test to confirm that a given 
test is appropriate for your data. Although it may be appropriate to 
transform your data (e.g., to provide a normal distribution), this also 
has consequences that may be unacceptable for some datasets.

• Normalization of  data makes relative trends clear, but conceals the 
meaning of  the actual values. It should therefore be used careful-
ly, and the results should always be interpreted in terms of  both the 
relative value and the actual value.
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