Chapter 14. Experimental design and
statistics

Note: I have provided clickable links to all software (www.
geoff-hart.com/books/journals/software.html) and Web pag-
es (www.geoff-hart.com/books/journals/web-links.html) in
this book, plus updates and error corrections (www.geoff-hart.
com/books/journals/2014-errata.html).

Ask anyone what scientists do and the odds are good they’ll tell
you that scientists collect numbers. But before you can collect num-
bers, you need to design an experiment that will generate reliable and
useful numbers; that’s the part of science referred to as “experimental
design”. It might seem odd to be describing this aspect of science in a
book on writing for journals, since one might reasonably assume that
the data has already been collected if you’re reading this book. How-
ever, a large proportion of the problems my authors encounter during
the peer review process result from following inadequate experimental
designs that produce data of insufficiently high quality or that provide
data that cannot answer their research questions, for reasons that I will
discuss in the rest of this chapter.

Part of the problem is that experimental design does not seem to
be taught as a specific course at many universities, though it is usual-
ly addressed to some extent within well-designed statistics courses. Stu-
dents seem to be required to learn this skill on their own, whether by
finding a good textbook on the subject or absorbing the necessary skills
subconsciously while reading journal manuscripts. For this reason, a
brief discussion of experimental design seems necessary to fill in what
seem to be common gaps in the education of many researchers.

A second problem is that it is no longer possible to present experi-
mental data without performing at least some basic statistical analysis
of that data, and these tests must be appropriate for the data you are
analyzing and the question you are hoping to answer. For an experi-
mental design to be effective, it must both generate reliable data and
generate data that you can analyze statistically to inform your readers
whether your results are likely to be meaningful. A great many inter-
esting and potentially important studies are undermined by an inade-
quate experimental design that makes it difficult to extract statistically
significant results from the mass of data. Although basic statistics is
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part of the curriculum in most fields of research, this course seems to
be poorly integrated with the key courses in a student’s major area of
study. Again, students seem to be required to learn how to integrate
this knowledge with their main expertise without much help. Although
that help is provided to some extent in graduate school, it seems sec-
ondary to the more urgent tasks of mastering advanced topics in a
study area and finding time to perform research and write a thesis.

Since most textbooks on experimental design and statistics are con-
siderably larger than this entire book, it’s clearly not possible for me to
cover either subject in any depth. Instead, I will provide general guid-
ance based on the most frequent problems that my many authors have
encountered during the peer review process. There are undoubtedly
other problems that the journal’s reviewers are not catching, but short
of performing a large and rigorously designed survey of the review
process (something that is beyond my ability), it’s not possible for me to
tell you what those problems are. Thus, in this chapter, I’ll focus on the
most common problems in the hope that by helping you to avoid them,
your papers will have a smoother review process.

Note: Although I've studied statistics, both formally during my
education and informally during many years of editing journal
manuscripts and needing to understand what my authors were
describing, I'm not a statistician. Although I'm confident that
my advice in this book is generally reliable, the best advice I
can provide is that you ask for expert help from a statistician at
your university or research institute. If that advice contradicts
what I have written here, follow the expert’s advice, not mine.

Experimental design

In modern science, most research is designed to test a Aypothesis,
which represents your informed belief (based on a rigorous review of
our knowledge of some subject) about some aspect of your experimen-
tal system. Experimental design is the art of determining how to test
that hypothesis. It begins with a careful consideration of the questions
you are trying to answer. It concludes with the development of a data
collection plan that will provide the data that you will use to answer
those questions. There are three main types of experimental design
that are worth distinguishing. The first is a primarily observational de-
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sign, in which your goal is to accurately describe some variable so that
you can determine whether its value differs between two or more con-
ditions. The second involves manipulating a study system and mea-
suring the results so that you can accurately describe the effects of the
manipulation. The third type involves modeling or mathematical sim-
ulation. To meet the goals of this chapter, it is not necessary for me to
distinguish among these designs, and I will use the term “treatment”
to represent any specific set of experimental conditions, regardless
of which of the three types of experiment I am discussing. However,
when you are planning an actual research project, the different charac-
teristics of these three types can greatly affect both the design of your
study and the results produced by that design, and you should consult a
statistician to learn how to account for these effects.

Choice of variables

For each question, it will be necessary to measure the values of one
or more specific variables so that you can analyze these values and de-
termine their meaning. There are two main types of variables to con-
sider:

*  Independent (explanatory) variables drive changes in other variables.
They may be variables that you will control, such as reaction tem-
perature, or factors such as time that are only partially under your
control. In both cases, they define the treatments or experimental
conditions that you will use. These variables are often referred to as
“factors”, and when you design an experiment, you must consider
how many factors are important and how many levels of each fac-
tor you should test. For example, chemical reactions are strongly af-
fected by the temperature and by the reagent concentrations, and
in a chemistry experiment, these factors are independent variables
whose effects you should explore.

*  Dependent (response) variables are the ones that change in response to
any changes you make in the independent variables. In a chemical
reaction, these variables might be the amount of product that re-
sults from a given combination of reagents, under a given set of re-
action conditions, and the rate at which the product is produced.

Choice of methods

Having chosen your variables, you must now decide how to mea-
sure their values. In any field of science, there are both proven tradi-
tional methods and promising new methods that you should consider.
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Thus, any proposed design should begin with a careful consideration of
how previous researchers have designed their experiments to measure
your chosen variables. Older methods that have been used for years,
and perhaps even for decades, are a good starting point because his-
tory has shown that they work. An advantage of reading the research
literature on these methods is that you will discover the problems that
other researchers have encountered when they used these methods and
any special tricks of the trade they have learned that make the meth-
ods more effective. Most importantly, the recent literature will reveal
situations in which certain methods should not be used, whether be-
cause they will be ineffective or because they will produce results that
are “confounded” (i.e., the results that might be explained by factors
other than the ones you studied).

Note: Choosing appropriate research methods requires an
understanding of the precision and accuracy that you must
achieve to answer your study questions. On the one hand,
there is no point performing highly precise measurements
when less precise measurements will be adequate. On the oth-
er hand, it may be difficult to achieve the desired level of preci-
sion or accuracy because of the high cost or long time required
to obtain those measurements; in this case, you will need to re-
design your experiment to work within your time and money
constraints.

Most methodological innovations have been developed for good
reasons, and if you don’t understand those reasons, you cannot ac-
count for their effects on your research. Understanding the origins of
a method and the assumptions it depends on is the only way to be sure
that a given method is an appropriate way to answer your research
question. If you cannot determine those assumptions, ask your more
experienced colleagues for an explanation; if they cannot provide one,
you’ll have to look to other experts for help. Every method depends
on one or more assumptions, and if those assumptions are not valid
for your experimental system, then there is a high risk that the meth-
od will produce invalid results. A great many mistakes have been made
over the years by authors who didn’t adequately understand the meth-
od they chose and its relevance for the system they were studying.
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However, even if the assumptions that underlie a given meth-
od remain valid, it may still be possible to improve on the method.
You should never abandon a method simply because it’s old; many old
methods continue to be useful, albeit with minor revisions. But it’s like-
ly that much new knowledge has been obtained since an older method
was originally developed, thereby challenging the underlying assump-
tions and requiring modifications of the method to account for the
newer, more complete understanding. Some older methods, though
potentially powerful and able to produce high-quality results, were
rarely used because of their difficulty or the need for expensive or rare
technology; instead, researchers used less powerful but more practical
methods that became the standard approach in a field. More powerful
methods may have recently become feasible based on new technology
that solves the problems with the old method and that makes it a prac-
tical research tool.

Error-proofing your research

Once you've identified the most important factors and the most
appropriate ways to measure them, the next step is to think careful-
ly about how your research could fail. Early in your career, this knowl-
edge comes from reading enough of the literature to understand how
your colleagues work, which is usually based on emulating successful
studies published in the literature. Later in your career, that knowledge
comes from years of personal experience as a researcher or with a par-
ticular experimental system. The researchers who have gone before
you have made a great many mistakes during their research, and learn-
ing how an experiment has gone wrong for others can help you avoid
the same fate. (You’ll discover enough of your own mistakes; there’s no
need to repeat the errors of others.) This advice is particularly true if
you’re early in your career and have not yet fully mastered your field
and its research techniques.

One major source of error, particularly in the biological sciences,
involves factors that you are not investigating but that can nonetheless
affect the factors that you are investigating. For example, physiologi-
cal and psychological differences between men and women can affect
the outcome of a medical trial, so men and women must be treated
as different groups in your design and analysis. Similarly, variations in
solution temperature and in the purity of the reagents can affect the
outcomes of a chemical study that focuses on the effects of using dif-
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ferent reagents or reagent combinations. Your review of the literature
will reveal all or most of the factors that can affect the outcome of your
experiment, and one of your first steps must be to determine which
of these factors you should control, how you can control them, and
the implications of failing to control other factors. In some cases, you
can account for these factors. In the medical trial, you may be able to
include separate male and female groups, or you may need to focus
on only one of those groups and leave the other group for subsequent
studies. In the chemical study, you may be able to control the solution
temperature precisely, and leave the effects of other temperatures (e.g.,
different reaction kinetics for different reagents) for subsequent studies.
It’s not possible to eliminate all possible mistakes or sources of fail-
ure, particularly if you’re working with living organisms (which are
famously difficult to control), but a deep understanding of the most
common problems in your field of research will let you incorporate
techniques to avoid these problems. For example, in many chemical or
physical analyses, the measurement apparatus must be calibrated re-
peatedly during the course of measurements using a “blank” that con-
tains none of the substance you’re seeking and a laboratory standard
with a known concentration of that substance. This calibration may be
performed using a laboratory-standard chemical solution provided by
a lab supply company (or created carefully in your own lab), a cylinder
of gas with a known concentration at a given pressure, a radioisotope
with a known activity, and so on. Calibration before, during, and after
your measurements lets you detect any developing problems that would
render your data meaningless so that you can correct the problem be-
fore it affects the rest of your data. For example, if a non-zero value
is obtained for the blank, that suggests the possibility of contamina-
tion, whereas an incorrect value for the laboratory standard indicates
the need to recalibrate the instrument. Other forms of calibration are
available for most measurement devices in most fields of research.
Error-proofing your research also requires a careful consideration
of each step in your method in search of things you might do wrong
even if the method itself is robust. A thorough literature review will
help because it will alert you to the potential problems that other re-
searchers have encountered and solved rather than relying only on
your own experience, which is more limited than that of the research
community as a whole and is likely to be biased in different ways. One
option is to create a list of symptoms that will tell you when something
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has gone wrong, so that if you see one of these symptoms, you can stop
your analysis and correct the problem before you risk analyzing the re-
maining samples. This kind of thought process will reveal additional
ways to reduce the risk of error or outright failure.

In many cases, and particularly in the most interesting research—
research that is pushing into unknown territory—consensus may not
exist about the best methodology or about how to error-proof your
use of that methodology. In that case, it may be necessary to perform
a series of exploratory studies that will let you understand your exper-
imental system thoroughly before you begin your main experiments.
Such preliminary research sometimes seems to be a waste of time, but
it’s the only way to ensure that you understand your study system suf-
ficiently well to begin collecting more interesting data. This step also
provides a good reality check that confirms your ability to analyze the
data you will subsequently collect and provides an idea of the amount
of variation in your study system (i.e., the sample size you will require
to obtain statistically significant results).

Note: For surveys and questionnaires, always test and revise
your initial set of questions before using them to collect data.
The goal is to confirm that they are as clear as you think they
are, and that potential respondents will answer the questions
you think you are asking. Using a subset of your eventual sur-
vey population is most effective, since the results will reflect the
real population’s understanding of your questions. Where this
is not possible, a good editor can help you review the questions
to ensure that they are clear.

There are several additional possibilities to keep in mind as a means
of reducing the risk of errors. Blocking is the creation of groups com-
posed of similar treatment units so that you can compare those units
both within and between the blocks. For example, you might compare
three drug treatments with a control (e.g., with no treatment or with
the standard treatment) in each block, and each block might represent
a different subset of a larger population. Similarly, you might compare
two fertilizer treatments with a control (e.g., no fertilizer or the stan-
dard fertilizer level) for the same crop in several regions. A blocked
design would also let you compare the effects of the same treatment
between blocks to gain insights into the amount of variation for each
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treatment. If the differences between a given pair of treatment units
are consistent among the blocks, you can have more confidence that
this difference 1s real and consistent; if the differences vary among the
blocks or contradict each other, you may have discovered that some
unexpected factor (e.g., a factor that leads to differences in the con-
ditions between the blocks) explains the variation. This hypothesis is
stronger if the same treatment produces significantly different results
in different blocks.

Factonial experiments are more complicated designs that let you test
all combinations of the levels of the independent variables simultane-
ously instead of testing each independent variable by itself. Although
this is a powerful technique for increasing the efficiency of a design, it
necessarily involves a large number of samples, so it may be prohibi-
tively expensive or time-consuming. A fractional or partial factorial ex-
periment may accomplish much of the same goal while minimizing
the size of the experiment. The Wikipedia article on factorial exper-
iments (http://en.wikipedia.org/wiki/Factorial_experiment) provides
a good introduction to this topic, but if you don’t already understand
this complicated topic, you should consult a statistician for assistance.

When you choose among the various potential variables to mea-
sure, keep in mind the possibility of orthogonality. Two independent
variables are orthogonal if they are not correlated—that is, if neither
one affects the other. For example, temperature and absolute humidity
(the mass of water per unit volume of air) are not orthogonal because
the amount of water vapor the air can hold increases with increas-
ing temperature. Two non-orthogonal variables tend to have a high
and significant covariance, so calculating the covariance is a way to de-
tect orthogonality. In contrast, an orthogonal design lets you predict
the dependent variable using two or more independent variables either
separately or in combination, thereby providing a way to estimate the
relative importance of or contribution by each variable. Because inter-
actions among factors often reveal important phenomena, a lack of or-
thogonality should not be considered a failure of your experiment; on
the contrary, it may reveal an important relationship that you must ac-
count for in future research.

It is also important to look for spurious relationships. Never forget
the famous advice that “correlation does not imply causality”, partic-
ularly if you cannot propose a causal explanation for the correlation.
Sometimes variable A appears to control variable B, when in fact vari-
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able C controls A, and A cannot control B in the absence of C. In
that case, C is the truly important variable. Thoroughly understanding
your study system will help you to understand whether it is necessary
to study only A, or whether you should also study C.

A final but very important way to confirm that you understand the
system you are studying is by obtaining independent lines of evidence.
This is referred to as triangulation, a term that originates from the use
of trigonometry to identify the position of the third point of a triangle
when you can determine the directions of that point from two known
positions and the distance between them. In the context of experimen-
tal design, triangulation means that you look for ways to provide con-
firmation by measuring the same factor from different perspectives.
If both lines of evidence point to the same conclusion, you can have
more confidence the conclusion is correct. Conversely, if the evidence
points to different conclusions, more research will be required to learn
the cause of this discrepancy.

Choosing a standard of comparison

Having chosen your variables and a method for reliably and accu-
rately measuring their values, the next step is to choose a standard for
comparison. That standard is usually a “control” for which you can
obtain a known result, but sometimes it is a standard practice that re-
quires improvement. The most basic control is the unperturbed exper-
imental system, since a common research goal is to perturb that system
and observe the consequences. For example, a known biochemical re-
action observed under a standard set of conditions (e.g., temperature,
pressure, reagent concentrations) should produce a predictable result
against which all other combinations of reaction conditions can be
compared. In genetics, levels of expression of so-called “housekeep-
ing” genes that are active in basic cellular functions provide that con-
trol; the genes that encode actin and ubiquitin are common examples,
though other genes may be more appropriate in specific circumstances.

Combining measurements of such a known situation with mea-
surements of a poorly understood situation that is your real study goal
provides two forms of control: First, if’ the absolute values of the con-
trol measurements lie outside the expected normal range, then you
know there may be a problem with your experimental conditions that
must be solved, or perhaps you have discovered something new that
can explain that unusual result. Second, if the results for the control
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fall within the expected range of values, they provide a way to normal-
ize your results. “Normalization” (also called “standardization”) relies
on the assumption that in the absence of perturbation, a standard pro-
cess or an indicator such as a housekeeping gene will function at 100%
of its normal efliciency, and dividing all results by that base level will
give a true measure of the change relative to the standard conditions.
In some cases, the standard of comparison is the result produced by an
existing method (e.g., the current form of medical treatment), and the
goal is to see whether a new treatment produces a result that (i) differs
from the absence of any treatment (the control) and (ii) provides a bet-
ter result than the current standard.

Note: Although “normalization” has a range of specific
meanings in statistics, non-statisticians commonly use the word
to refer to the comparison of a value with a standard of com-
parison, in the form of a ratio. This differs from “transforma-
tion”, which involves mathematically adjusting values so that
the dataset more closely resembles a normal distribution. See
Osborne (2002) and Maciejewski (2011) for details.

Eliminating bias

The next step is to eliminate as many forms of bias as you can. Be-
cause calibration greatly reduces the risk of equipment-based errors
that would introduce a consistent bias, human bias becomes the most
common problem—and the most pernicious form of bias because it is
often subtle and difficult to detect.

When you will be studying multiple instances of your study sys-
tem, whether those instances are individuals within a population, sites
within a region, ore bodies within a geological province, or depths
within a body of water, randomization is a good approach to elimi-
nating human bias. Randomization does not mean that you carelessly
throw your test subjects into different groups or pick samples with your
eyes closed. Rather, it means that you distribute your subjects among
groups or choose your sample locations without conscious or uncon-
scious bias. Many popular randomization techniques, such as drawing
playing cards from a deck or using the randomization function pro-
vided by many computer programming languages, are actually closer
to pseudo-random. That is, they may appear to be random for small
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sample sizes, but in statistical studies with large numbers of iterations
(e.g., Monte Carlo simulations, computer models of the environment
that run over long time periods or with short time steps), patterns in
the randomization algorithm may become apparent that bias your re-
sults—potentially seriously. If you need to use true randomization that
will be suitable for the latter type of experiments, explain your needs to
a statistician and ask for their advice.

Bias can arise from other causes. The first form of bias arises from
temporal effects. Some effects are delayed and cannot be measured for
some time after you apply a stimulus or disruption of the experimen-
tal system. For example, it may take some time for applied heat to fully
penetrate an object or to raise an entire volume of liquid to a consis-
tent temperature, and it may take time for a plant to change its physi-
ology in response to changes in gene expression. Examining the system
before that time has passed can lead to an incorrect understanding of
the effects of a treatment. Effects can also change over time, as in the
case of plants that respond differently to a treatment during their veg-
etative growth and reproductive stages or that respond differently if
the daylength, light intensity, or other factors change during the year.
For these reasons, you must always carefully determine the initial state
of the study system and decide both how long will be required before
you can observe the effect of a treatment, and whether that initial state
is suitable for the factor or factors that you are studying. If you choose
the wrong time or an unsuitable starting condition, this can bias your
results.

An important form of bias arises when the subject’s knowledge
of the treatment can potentially influence the outcome, as in the case
of studies with living organisms and particularly studies with humans.
In such a case, you must use blinding to ensure that the subjects can-
not learn which treatment they are receiving. If your knowledge of the
treatment could also affect the subject’s perception of the treatment or
your interpretation of the results, then you should also use blinding for
yourself (a so-called double-blind experiment) to ensure that you do not
know the nature of the treatment. In this case, someone who is not di-
rectly involved in applying the treatment or collecting and analyzing
the data should assign subjects to each treatment for you. Although this
is essential in fields such as medicine and psychology, it is rarely, if ever,
necessary in the physical sciences, as Smith and Pell (2003) point out
quite clearly.
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Randomization is important when you do not know enough
about your study system to predict whether it is subdivided into dis-
tinct groups. Sometimes these groups are clear and obvious, as in the
case of vegetation studies that distinguish between grassland and forest
sites. In other cases, it may be necessary to perform some preliminary
research to determine whether subtler groups exist. When you know
of or can detect such groups, it is better to divide your sample among
these groups, a process referred to as stratification. This approach re-
duces variation in your data that results from differences between the
groups; for example, studying human populations for the incidence of
a beard would provide an average incidence of 50% if you combined
men and women into a single population, whereas performing sepa-
rate analyses of these groups would provide an incidence close to 0%
for women and close to 100% for men. In such a case, you should
divide your sample between these groups and then sample randomly
within each group. Correct stratification requires you to identify back-
ground factors (ones that you will not directly manipulate) that could
affect the dependent variables, the independent variables, or both.

Replicate your results

Replication 1s a fundamental technique in science, because it in-
creases your confidence that what you are observing is real. Indeed,
an interesting result obtained by one researcher may not be consid-
ered real until similar results have been obtained by other research-
ers using the same techniques. Replication is particularly important for
work with living organisms, which have much higher variability than
non-living systems. Replication is also important within a single exper-
iment, since it provides more confidence that you have obtained a rep-
resentative sample of the population that you’re studying instead of

accidentally selecting the one or few individuals who will respond in a

specific way. Replication comes in two forms:

* Increasing your sample size to increase the likelihood that you have
obtained a representative sample.

* Increasing the number of replicates (groups of measurements, each
with a similar sample size) to determine whether the results are
highly predictable (i.e., are similar for each replicate) or may be less
predictable (i.e., vary widely among the replicates).

One of the most common experimental design failures that I've see
during the past 25 years results from an insufficiently large sample size
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and a lack of sufficient replication. The most common reasons for this

problem are:

* Financial constraints: Research budgets are fixed, and the more
expensive the measurements, the fewer you can afford to obtain.

* Time constraints: The longer it takes to obtain each measure-
ment, the fewer measurements you can obtain within a given peri-
od.

* Labor constraints: The fewer people (including graduate stu-
dents and undergraduates) who are available to help you obtain
your measurements, the fewer measurements you can obtain within
a given time period.

* A combination of financial, time, and labor constraints:
When you have a limited budget, time, and pool of assistants, this
combination severely constrains the number of measurements you
can obtain. For example, research in remote and hazardous loca-
tions (e.g., the surface of Mars) permits only a limited sample size.
Although these constraints cannot be ignored, they are sometimes

less serious than a recurring problem in the papers that I've edited: the

researcher did not attempt to predict the sample size they would re-
quire to obtain statistically significant results. Although it is never pos-
sible to be absolutely certain that you’ll obtain significant results, or
non-significant results that you can be confident are really not signifi-
cant, you can greatly increase the likelihood of success by using avail-
able knowledge to estimate an appropriate sample size. There are

several possible approaches, each of which has a different goal (e.g,

calculating a reliable mean versus testing a hypothesis) or which relies

on different statistical assumptions (e.g,, that the population resembles

a normal rather than a skewed distribution):

* The simplest approach, which is therefore least likely to be effec-
tive for your specific conditions, is to review the literature and learn
what sample sizes previous researchers have used successfully. The
more similar their study system is to yours, the more likely this ap-
proach will be productive.

* A more sophisticated approach involves reviewing the literature on
your subject to learn the range of variation (typically the variance,
standard deviation, or coefficient of variation) that has been report-
ed for a given variable. Where a subject has been studied in depth,
you may be able to select studies that are similar to your study sys-
tem and use their estimates of variation. Based on that variation
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and the type of statistical test that you plan to use (e.g., Student’s ¢,
the F statistic in analysis of variance), you can consult published ta-
bles of probability to determine the required sample size.

It is also possible to calculate the sample size based on the required
power of the test (e.g., a % likelihood of being able to detect a dif-
ference of D units between two treatments).

Wikipedia provides a good discussion of some of the factors to
keep in mind when calculating a sample size (http://en.wikipedia.org/
wiki/Sample_size_determination), but for difficult or demanding situ-
ations, it would be wise to consult a more authoritative reference or a
statistician who has expertise in experimental design.

Note that increasing your sample size will not always produce bet-
ter results. Even if you ignore certain issues such as the statistical char-
acteristics of the study population, there comes a point of diminishing
returns when increasing the sample size increases the cost, the time re-
quirements, or the labor requirements to complete the research. On
that basis, a smaller sample size may be more efficient while still pro-
viding acceptable power to obtain statistically useful results.

In all experimental designs, it is wise to remember the risks in-
volved in taking shortcuts (choosing a smaller sample size) to reduce the
cost or the time and labor requirements of a study. Compare the cost
of a more demanding design with the cost of spending large amounts
of time and money but failing to achieve publishable results, whether
those results are statistically significant differences between treatments
or a defensible lack of such differences. When statistical calculations
suggest the need for a larger sample size than you can afford, some
degree of compromise will be necessary; often, this means that you
must reduce the scope of your project to investigate a smaller subset
of the overall problem. The larger the difference you expect between
two treatments and the lower the variation within each treatment, the
smaller the sample size you can afford to use.

Test your design to confirm that it produces data
you can analyze

When you believe that you have created a sound experimental de-
sign, test that your design produces data you can actually analyze. To
test your design, create an “artificial” dataset based on your expecta-
tion of the range of values that you will measure. You can sometimes
obtain this data from published research (e.g., by extracting data from
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a scatterplot); in other cases, you can generate a random population of
data using statistical software (e.g., using a Monte Carlo simulation). In
the latter case, you must carefully consider what assumptions the soft-
ware makes about the nature of the statistical distribution. For exam-
ple, a randomization procedure that is based on a normal distribution
will not provide a valid test for a population with a non-normal distri-
bution of values. Use the same equations or statistical tests that you
will use to test your real data to test the artificial data. If you detect any
problems, re-examine your design to see whether you can eliminate
them or whether you will need different tests or measurement proce-
dures.

One common problem is to base your design on the assumption
that the data will be normally distributed (i.e., will follow a normal
distribution). Never accept this assumption uncritically. If the statisti-
cal software you use for your data analysis does not automatically test
data for normality before applying a statistical test that requires nor-
mally distributed data, you must perform that test yourself before you
use that statistical test. Data that seems likely to follow a given type
of statistical distribution may require an experimental design based on
that distribution. Although it is common to transform data (often us-
ing a logarithmic transformation) until it meets the criterion of nor-
mality, thereby allowing the use of standard statistical procedures,
this approach is suboptimal because it can introduce certain statistical
problems (Osborne 2002).

Design your study to provide publishable results

If possible, try to design your study to produce publishable results,
even if it fails to support your primary hypothesis. Choosing a suffi-
ciently large sample size, with adequate replication, and using error-re-
duction techniques such as the use of blank controls and laboratory
samples with a known value of some property means that even if you
do not find statistically significant differences between two treatments,
you can at least claim with some confidence that it is possible that no
difference exists. Traditionally, it has been difficult to publish such neg-
ative results, since reviewers tend to assume that something was wrong
with your experimental conditions or with your analytical procedure.
You’ll have an easier time persuading journal reviewers to accept your
negative results if you provide evidence that neither assumption is cor-
rect.
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Dirty secret: To increase the likelihood of obtaining publish-
able results is to limit your ambitions. If a larger study can be
broken into several smaller experiments that each tell a com-
plete story, it may be possible to obtain publishable papers from
one or more experiments even if the other experiments fail.

If it’s not possible to publish all of your results as a single long
research paper, some subset of your results may be publishable as a
shorter paper, such as a letter, research note, or short communication.
Although these types of paper are less prestigious than a full paper,
it is better to publish them than to obtain no published result from
your study. Where it is possible to design your experiment to produce
a series of small publishable papers, incorporate this possibility in your
design. If the overall study produces a consistent story based on assem-
bling the smaller stories from each experiment, that’s the best outcome.
If that is not possible, then at least you will receive some publication
credits from your hard work.

Obtain a reality check

The final step before you begin using an experimental design to
collect data is to ask at least one colleague to review your design rig-
orously in search of flaws, including flawed assumptions. Fixing these
flaws before you begin collecting data can save thousands of dollars of
your research budget and tens or even hundreds of hours of research
time. Although your ability to critique your own designs will improve
as you gain experience with experimental design, and although this re-
view is less necessary when you are using a design that your previous
research has proven to be effective, someone who was not involved in
the design process will always have a perspective you lack. They may
have knowledge you lack about better methods or problems with the
methods you have been using, and can therefore suggests ways to im-
prove the power of your design or reduce the risk of failure.

When you form a hypothesis, it is usually based on your educated
belief about how a system 1is likely to function and how that function-
ing will respond to experimental manipulation. It is therefore appro-
priate to focus on tests of your belief. But you must never forget that
your belief (and thus, the hypothesis that is based on it) may be wrong,
or that something very interesting may be happening that is entirely
unrelated to your hypothesis. Focusing too narrowly on your hypoth-
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esis can lead to what is called confirmation bias (noticing only the data
that supports your preconceptions), and this can blind you to nega-
tive results that contradict your hypothesis. It can also blind you to po-
tentially interesting phenomena that should be studied in more depth.
Thus, the best experimental designs both provide support for identify-
ing contradictory evidence and encourage you to take a step back and
look at the larger system in which your study system exists. Some of
the most interesting research results are obtained by serendipity rather
than careful design.

Wikipedia provides a good summary article on experimental design
that includes an extensive bibliography (http://en.wikipedia.org/wiki/
Design_of_experiments). Your colleagues will also be a good source of
recommendations for textbooks, software, and other resources. Wikipe-
dia also provides a useful glossary of the terminology of experimental
design (http://en.wikipedia.org/wiki/Glossary_of_experimental_de-
sign) that will help you decipher the literature on this subject.

Statistics

Modern science relies so heavily on statistics that it is almost im-
possible to publish a study that lacks a statistical analysis. As I noted in
the previous section, it’s important to confirm that your experimental
design supports statistical analysis—and ideally, that it supports powerful
statistical analysis, since some statistical tests provide weaker evidence
than others and may be unpersuasive to a journal’s reviewers. If you
lack sufficient expertise to choose an appropriate test, speak with a stat-
istician, and revise your experimental design (if necessary) to permit
the use of that test. In the rest of this chapter, I'll discuss some aspects
of statistics that confuse many researchers and that have caused prob-
lems for many of my authors.

Note: Lang and Altman (2013) provide a useful discussion of
how to report statistics in journal papers, along with many lit-
erature citations that provide additional details.

A few words about significance

The first thing to understand about statistical significance is that a
significant result is not the same thing as a #rue result. Significance means
only one thing: that we can be reasonably confident that a result did
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not arise purely from chance. However, although a high level of sig-

nificance is reassuring, differences in significance levels are far less

meaningful than most people believe because of several important but
sometimes forgotten points:

* All thresholds for significance are completely arbitrary. The stan-
dard significance level of p < 0.05 means an error rate of 1 in 20,
which is unacceptably high in many contexts.

* The same significance level has very different meanings for a study
with a sample size of 10 and a study with a sample size of 1000.
Any given p level is far more meaningful in the second case.

* A result that is statistically significant may have no practical signif-
icance, whereas a non-significant difference may be so large that
it has high practical significance that demands a closer look at the
study system.

*  Where the range of values in an observed statistical distribution is
large, the extreme values (those that fall outside the 95% confidence
interval, which are often called “outliers”) may be too large to ig-
nore, particularly in large populations that are expected to contain
one or more outliers.

» A difference between two treatments that is statistically significant
may be a mathematical artifact rather than a real difference if the
measurement resolution is sufficiently coarse. For example, if the
maximum spatial resolution of a satellite photo is 30 m, a statistical-
ly significant 1-m difference in positioning would not be meaning-
ful; that difference is less than the resolution of the image.

* Gelman and Stern (2006) note another underappreciated problem:
that a small change in the underlying data can lead to a dispropor-
tionally large change in the significance level.

Some authors I've worked with also make the mistake of focusing
so narrowly on the statistical results that they don’t stop to think about
the larger context for the data. Examples of some common errors pro-
vide insights into why you should think as carefully about the meaning
of the data as you do about its statistical significance:

* The “base rate” fallacy (failing to account for the proba-
bility of a given result in a population): Consider the case of
an identical frequency of computer defects (1 in 100 units require
repairs) for two brands: Brand A, which sells 1000 units per month,
and Brand B, which sells 100 units per month. Even though the fail-
ure rate is identical, the expected number of repairs per month will
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be 10 units for Brand A and 1 units for Brand B. Without consid-
ering the base rate (sales per month), it is easy to reach the errone-
ous conclusion that A requires 10 times as many repairs as B, and is
therefore an unreliable brand.

Extrapolation based on a regression: A linear or multiple re-
gression can provide an extremely high goodness of fit and strong
statistical significance, but without understanding the range of pos-
sible values for each parameter in the regression, we cannot tell how
far we can safely extrapolate using the regression equation. For ex-
ample, many natural phenomena exhibit predictable behavior only
within a narrow range of conditions; the regression becomes mean-
ingless beyond those conditions, or may require separate regression
analysis (e.g., piecewise regression) for two or more subsets of the
overall range of conditions. If your goal is to extrapolate beyond
a certain range of values, you must adopt an experimental design
that will let you identify the limits of a regression.

Choosing the wrong form of regression: Researchers com-
monly assume that a linear regression is the best form for a given
set of data, and fail to test this hypothesis by comparing alterna-
tive forms of equation to see whether they provide a better fit to
the data. As a result, many processes that are described using a sim-
ple but statistically significant linear regression should instead be
described using nonlinear regression or (as noted in the previous
point) a segmented (piecewise) regression that produces different
curves for different ranges of conditions.

Correlation may or may not be related to causality: The
fact that two variables are significantly correlated may not be mean-
ingful if you cannot propose an explanation of that correlation
based on some underlying physical or biological mechanism. If
such a mechanism exists, then the correlation is more likely to pro-
vide a measure of the strength of the mechanism.

Simpson’s paradox (https://en.wikipedia.org/wiki/
Simpson’s_paradox): When you perform regression analysis us-
ing combined data for two or more groups with different charac-
teristics, you may reach a conclusion that differs dramatically from
the conclusion you would reach if you had analyzed the two groups
separately. This example illustrates the importance of efforts to de-
tect significantly different groups that would lead to a need for strat-
ified sampling and separate analyses for each group.
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The lesson of these examples is that you must think carefully about
the meaning of your data and its underlying characteristics before you
consider whether your results are statistically significant. Reinhart
(2013) provides an informative discussion of various common errors
related to statistics-based reasoning,

Reporting significance levels

How do you report significant differences? In the text, the most
common approach is to state that one value was significantly higher
or lower than another value, then add the test name and p level in
brackets. However, you should never say only that two results were sig-
nificantly different, since that does not tell the reader the direction of
the difference; always use more precise wording such as “significant-
ly heavier” or “significantly negatively correlated” to clarify the nature
of a difference or correlation. To avoid the need to provide this infor-
mation each time you describe a difference, some journals will let you
define the significance level for each test only once, in the Methods sec-
tion, using wording similar to the following: “Unless otherwise noted,
differences were statistically significant at p < 0.05.” You can then re-
port the p level only for important exceptions to this rule. Note that
except for unusually precise statistical comparisons, it is almost never
necessary to report a more rigorous criterion than p < 0.001.

In figures and tables, the best approach depends on the nature of
the statistical test that you used and the specific comparisons that you
tested:

» If you are comparing only one value at a time with some refer-
ence value, such as the value in the control, you can often label the
values that differ significantly with asterisks, then add the following
description in the figure caption: “Significance of differences com-
pared with the control [or other named reference]: +, p < 0.10; *, p
< 0.05; **, p < 0.01; ** p <0.001.” Delete any of these definitions

for significance levels that did not occur in your analysis.

Note: These four symbols for significance levels are used by
most journals, and represent an informal standard that you
should not change.

» For multiple comparisons, where you are comparing values both
with a reference value and with each other, use the following simple
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wording: “Values in a column [or “in a row”] labeled with the same
letter do not differ significantly.” For more complicated compari-
sons, you may need a more complex wording such as the following:
“Values in a column [or “in a row”] labeled with the same capital
letters do not differ significantly among treatments. Values in a col-
umn [or “in a row”’] labeled with the same lower-case letters differ
significantly among times for the same treatment.”

A note if English is your second language: Capital let-
ters are A, B, C, ... Z; lower-case letters are a, b, c, ... z.

Although more complex comparisons are possible, the resulting
notation may become too complex for this kind of description to be
effective. In that case, consider dividing the figure or table into two or
more parts, each of which focuses on efliciently presenting only one
subset of the comparisons. To avoid duplication of information in the
printed version of the journal, it may be necessary to present the less
important comparisons as Online Supplemental Material. (See Chap-
ter 18 for details.)

A final note about significance: To avoid confusion, you should
only use the word “significant” in numerical comparisons when you
are referring to statistical significance. In all other contexts, you should
use words such as important or meaningful to describe the relevance of a
result, or words such as greatly, markedly, substantially, dramatically, or clear-
ly to describe the magnitude of a difference.

Use the right test statistic

As I noted earlier, every statistical test depends on certain assump-
tions, including assumptions about the underlying distribution of the
data. Before you use any statistical test, learn what assumptions it re-
quires, and test to confirm whether those assumptions are valid. This
seems like an obvious point, but I have worked with so many young sci-
entists (and some who were not so young) who don'’t test their data for
normality before applying a test that is only valid for a normal distri-
bution that I feel it necessary to remind you of this point. Part of the
problem is that many researchers assume that their statistical software
will automatically examine the distribution of the data before it allows
the use of a statistical test. Often, that is not the case, and you must re-
member to perform this test yourself. If the test’s requirements are not
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met, using the test will potentially produce meaningless results. To in-
form readers that you have performed this test and remind young re-
searchers to follow your example, it is worth explicitly stating that you
confirmed that the test was appropriate (e.g., that you tested that the
data follows the distribution required by the test).

When your data does not follow the distribution required by a test
(commonly, a normal distribution), researchers commonly apply var-
ious mathematical transformations to the data until the transformed
data follow the required distribution. Two common transformations
are based on power functions (e.g., x* = &”, where &’ is the transformed
value, x is the original value, and p is the power, ranging from -1 to +1)
or logarithmic functions (most commonly, log = log  and In = log).
Note that just because you have applied a commonly used transforma-
tion, this does not mean that you have produced a normal distribution;
you should always confirm that you achieved this result. If the distri-
bution is still not normal, it is tempting to apply an additional trans-
formation, but each new transformation progressively distorts the data
you are using for your analysis. Instead, it may be wiser to use a non-
parametric statistical test. Many parametric tests that require a normal
distribution have non-parametric equivalents; these include the Kru-
skal-Wallis test instead of one-way analysis of variance, and Spear-
man’s rank correlation instead of Pearson’s correlation.

Tip: Even though “log” is assumed, by convention, to mean
log , it is clearer if your write this as log, . So many of the au-
thors I have worked with did not recall this definition that I am
convinced that being explicit is safer than assuming that read-
ers will understand the correct meaning. The cost of this ex-
plicitness—adding only two characters (10)—is acceptable.

One problem with transformations is that even when there are few
outliers (often defined as values that lie more than three standard de-
viations from the mean), the transformation may compress the data
into a small area of the graph, making it difficult to distinguish pat-
terns within the resulting tightly clustered data. In some cases, it may
be helpful or even necessary to present both an overall graph that in-
cludes all of your data, and an enlarged version of the key parts of the
graph that contain areas of interest. Maciejewski (2011) provides a use-
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ful discussion of choosing a transformation that is optimal both for the
characteristics of the data and for visualization of that data in a graph.

The set of parameters that relate to what are referred to as “mea-
sures of central tendency”, and which describe the position of a dis-
tribution’s center, must also be carefully considered. By default, most
researchers calculate the mean value, and in doing so, forget that the
mean works best for a data with a symmetrical distribution. For strong-
ly skewed distributions, the median (the point where half of the popu-
lation has a larger value and half has a smaller value) or the mode (the
value or range of values with the highest frequency) represent better
choices. In some cases, the range of values or the interpercentile range
may be more appropriate. Similarly, the standard deviation (SD) pro-
vides an estimate of the size of the variation of the distribution around
the mean. In contrast, the standard error (more correctly, the standard
error of the mean, SEM) represents the precision of estimates of the
mean; that is, it is the standard distribution of the sampling error when
you use a sample mean to estimate a population mean, and is particu-
larly important in regression analysis. It should not be used in place of
the SD just because it appears to indicate a lower magnitude of varia-
tion.

Tip: Whenever you provide values in the form A+B, always
specify whether B represents the SD or the SEM.

As I noted in the previous section, correlations are often used to
represent the strength of the relationship between two variables. How-
ever, many authors are confused about the different types of correla-
tion. Pearson’s correlation coeflicient is not the same parameter as the
goodness of fit in least-squares linear regression. How to capitalize
these two parameter names varies, but lower-case r is most often used
for Pearson’s correlation coefficient, whereas capitalized R* (not 7 or R
without an exponent) is the regression “goodness of fit” or “coeflicient
of determination”. Pearson’s » provides an indication of how closely a
relationship between a dependent variable and the independent vari-
able follows a straight line, whereas R” represents the proportion of the
variation in the dependent variable that can be explained by the de-
pendent variable. The two are clearly related quantities, but because
r typically equals the square root of R? they cannot be used as syn-
onyms. Because I find considerable confusion about this difference, it’s
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important to clearly state the parameter name that you are reporting.

For example, write “the coeflicient of determination (R%”. Once you
have defined your terminology, the reader will understand the mean-

ng,.

Tip: For any value that expresses the strength of the agree-
ment between two variables, always report the p value to com-
municate whether the relationship is statistically significant. For
very large values (e.g., values > 0.9), readers will assume signif-
icance, but for small or intermediate values, the significance of
the result is unclear if you do not state it explicitly.

The final point I’ll discuss relates to the benefits and drawbacks of
presenting “normalized” versions of your data, which are the values
expressed relative to some reference point. Although normalized val-
ues are sometimes expressed by subtracting a baseline reference value,
the most common approach is multiplicative: the normalized value is
expressed as some multiple (ratio) of the reference value. This is par-
ticularly important for variables with different units of measurement
or from different categories (e.g., mass versus volume), since the nor-
malized values then reflect the proportional change. This calculation is
usually done by setting the value for one treatment (usually the mean
value for the control, but sometimes a different reference value) to 1.0
or 100%; all other values are then divided by the reference value used
in this calculation. In essence, this is no different from calculating the
ratios of one value to another.

This approach offers the advantage of providing an intuitive, eas-
ily understood explanation of the relative values of the two numbers.
However, it suffers from the flaw I described earlier in this chapter as
the “baseline fallacy”: by concealing the baseline value, it also conceals
the meaning of the normalized value. For example, if’ the mean val-
ue for the control is 1.0 units and the value for a treatment is 2.0 units,
the normalized value is 200% of the reference value; the same result
is obtained if the control has a value of 100 units and the treatment
has a value of 200 units, even though the difference (200 — 100 = 100
units) is 100 times the former difference (2 — 1 = 1). This can lead to
a problem similar to one that I discussed earlier in the context of sig-
nificance: a failure to consider the magnitude of the actual difference.
The solution is obvious once you know it: provide both the relative val-
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ue and the actual value, and carefully distinguish between their differ-

ent meanings.

Key points to learn

An important reminder: I am not a professional statistician. Al-
though my advice in this chapter is sound for most typical situa-
tions, more complex situations will require different solutions. When
in doubt, obtain the advice of an expert statistician when you plan
your own research.

Experimental design seems to be poorly taught at most universities,
and there seems to be little guidance on how to integrate statistics
with the core subjects in a given field of research. As a result, the
authors I've worked with make many mistakes in their experimental
design and the associated statistical analysis. In this chapter, I pro-
vide some advice based on 25 years of observing these mistakes in
the hope that you will be able to avoid the same mistakes.

The process of experimental design can be summarized as follows:
start by identifying the variables that you will control or measure,
and methods and instruments suitable for measuring their values.
Conclude by looking for ways to error-proof your measurements,
and include those ways in your design. Choose an appropriate stan-
dard against which to compare your results.

Look carefully for potential sources of bias in your measurements,
and take precautions to eliminate or minimize the bias.

Don’t guess at the replication and sample size that will be necessary
to increase the likelihood of obtaining statistically significant results.
There are statistical techniques to estimate this sample size, and you
should determine which technique is best for your study’s goals.
Always test your design using artificially generated data to ensure
that you can successfully analyze the data. Be careful not to gen-
erate test data with characteristics (e.g., the distribution) that differ
greatly from those of your actual data.

Design your study to ensure that at least one of the experiments is
likely to succeed, thereby producing publishable results.

Obtain a reality check from your colleagues to ensure that you have
not forgotten anything important or made any incorrect assump-
tions in your experimental design.

Statistical significance is a complex concept, and there are many
misunderstandings of its true meaning. Watch for several logical er-
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rors when you describe significance, and clearly distinguish between
statistical and practical significance.

* Before using a statistical test, confirm that your data conforms with
the requirements or assumptions of that test. Explicitly confirm this
instead of assuming that a widely used test is appropriate for your
data; statistical software often does not test to confirm that a given
test is appropriate for your data. Although it may be appropriate to
transform your data (e.g., to provide a normal distribution), this also
has consequences that may be unacceptable for some datasets.

* Normalization of data makes relative trends clear, but conceals the
meaning of the actual values. It should therefore be used careful-
ly, and the results should always be interpreted in terms of both the
relative value and the actual value.
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